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Abstract— This paper describes the biological principles un- than demonstrate that organisms optimize, 3) [9] opinets tha
derlying a recently proposed optimization technique, Selective ‘searching for peaks depicts evolution as a slowly advagcin
Evolutionary Generation Systems (SEGS), and concludes a tedious, uncertain process, and 4) evolutionary compartat

novel, fundamental result about the process of evolution in for d ic fit land . lativel f
Nature. A systems-theoretic framework from the emerging field or dynamic fitness landscapes IS a relatively new area o

of self-reproducing systems is utilized in this work to illustrate ~ Study (for an overview, see [10]).
the parallels between biological processes and SEGS. The SEGS  This paper shows that one possible rationale for evolution
technique is useful for tackling a generalization of the standard i, Nature is to solve exactly the biological problem above.

global optimization problem; the generalization depends on a - . . . .
parameter referred to as the level of selectivity, which restore The purpose of this paper is to emphasize the biological

traditional optimization when the parameter equals infinity. The ~ Parallels of SEGS and describe the process using a systems-
SEGS technique has been shown to produce responsivenesstheoretic abstraction, rather than fully detail the SEGS8-op
efficiently, and to also be a generalization of both the canonical mization technique; full proofs and comparative perforoean
genetic algorithm with fitness proportional selection and the (agyits are available in [1]. Since the canonical genetic

(1+1) evolutionary strategy. This paper explains how the SEGS - S . .
technigue models biological responsiveness and search, andalgorlthm with fitness proportional selection and the (1+1)

the result is a Markov chain Monte Carlo method that has ~€volutionary strategy are particular cases [1] of the SEGS
connections with statistical mechanics. The implication of the technique, these approaches share some biological geralle
analysis is that natural evolution is an optimally efficient search  SEGS is linked [1] to a Markov chain Monte Carlo (MCMC)
process under certain technical conditions, which are often 11] method with known connections to statistical mechsnic
satisfied in Nature. here, it is indicated that this MCMC method is optimal
|. INTRODUCTION with respect to an efficient search criterion. The implicati
and chief novel claim of this paper is that evolution is an

) ) ] _ optimally efficient search process under certain technical
HE technique of Selective Evolutionary Generationsgnditions.

Systems (SEGS) [1] was proposed in response to the
problem of efficiently designing an agent’s behavior from
a search space of possible actions such that the desigri2dProblem Definition
behavior is “good” and also responsive to changes in what
constitutes good behavior. The concepts of behavior design L€t X be a search space, the set of genotypes [12]. The
efficiency, goodness and responsiveness are defined pyeciddoPlem ofbehavior desigrseeks 1) a probability density

in the following section. Reference [1] emphasized an opfiunction (referred to as théehavio) ¢x : X — R* that
mization version of this problem. accomplishes specified objectives, and 2) dynamic transiti

An alternative biological formulation of this problem is laws that cause the variableto be distributed according to

the efficient determination of a viable species from a seardf -8+, t0 exhibit the behavior specified lgx.
space of possible organisms such that the species is fit and-€t z: X — Z be an unknown, computable, and possibly
adapts to variations in its fitness landscape. This probleffianging function that we are interested in. HeZeis a
interpretation suggests evolution; however, ‘Darwinian-e Metric space, the set of phenotypes [12]. Suppose that we are
lution may appear inefficient’ [2]. For optimization, Nagur 9iven an elementgesin the image ofz, and we wish to find
based approaches may involve reinforcement learning 8] a’ € X such thaiz(x) = Zges 0r such that|z(x) —zyed| is small.
simulated annealing [4], both of which are off-line and nonFormally, we want to design a behavigg that achieves a
responsive. Techniques inspired by evolution (e.g., genenown expected valu®, i.e., Eq,[|[z(X) —zged|] = Y, and
algorithms [5], evolutionary strategies [6], and variatio We refer to this expectation @odnessLet y(x) = [|z(x) —
of these two) have the following features: 1) [7] notedes| -
that the use of ‘the Darwinian principle does not guarantee We also desire the behaviopx to be responsive to
successful optimization, 2) [8] states that evolution iopt perturbations irg, i.e., ‘90—‘2‘ #£0.
mization theories (on which these techniques are based)Let f: Z — R*. We allow the behavior design method
are an attempt to understand the diversity of life rathep employ a real-valued, positive fitness functibrnt X —

_ R* 1 x+— F(x) = (f o2)(x) = f(z(x)). The scheme to find
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A. Background and Motivation



C. Related Literature Use of the adjectivevolutionaryhere is consistent with biol-

The SEGS technique arose out of studies of biologicall9Y [12], where evolution is defined as the genetic changes
inspired self-reproducing systems, a field resulting frtva t 1N @ biological population that occur every generation due t
work of John von Neumann [13]. A comprehensive overvie/€netic changes from parent to descendant.

of self-replication is documented in [14]-[16]. Let (ry) = (rlarZW'»ru) be a sequence g resources
Biological responsiveness was first examined as resilien&@mM R. SEGS theory defines the notation
in the seminal work [17], and a recent survey of the many G (% (1)) :=G(...G(G(X,11),T2)-...Ty) 1)

definitions of resilience in the literature is available &8].

There are numerous instances of autonomous robustnesgagenote the cell produced byusing sequencér“).

well as resilience to small and large environment fluctuetio  Definition 2: The set of cells,X, of the evolutionary

in complex natural systems. Examples include physioldgicgeneration systerd® = (X,R,P,G) is reachablethrough G

regulation in multi-cellular organisms [19], [20]; grouggu- andR if, for all pairs (x1,xp) € X2, there existk € N and a

lation in colonies of social insects [21]-[23]; the evotutiof ~ sequencéry) € R such thatx, = G (xg, (rk)).

species through adaptation and natural selection [24]-[26 In Definition 1, the restriction that the offspring of a cell

and the rebounding of complex systems from earthquakd® itself a cell implies that the set of cells ¢dosed[32],

tsunamis, hurricanes, asteroid strikes, etc. [27], [28]. since there is no feasible transition to any element outside
Reference [29] on rational behavior, an important SEGS. If the set of cells is also reachable, thEnis said to be

principle, sought to explain a remarkable property of théreducible [32].

collectives that appeared in nature. These collectivesgglwh ~ SEGS theory associates each cell with a non-zero, positive

had different fractions of professions (as in beehives fquerformance index that is a measure of the fithess of the cell,

example), maintained an appropriate fractional distitbut F : X — R™. The notion of fitness facilitates the following

among the various social functions even if one of the caste®vel mathematical definition of selection.

was removed. Using fractional interactions, the theoryrexa  Definition 3: Given a cell setX, and a fitness function

ines the behavior of a collective and identifies the propsrti F : X — R™, let Select X x X x N — X be a random function

of systems of many elements. This is still an important tppisuch that ifx; € X andx; € X are any two cells, antll € N

recent articles on the subject now incorporate evoluticth aris the level of selectivitythen

natural selection [30], [31].

X1 with probability

D. Paper Outline Selectxi,x2,N) = F
The remainder of this paper is as follows. Section I

explains the biological relationships that are embodied in L ) ) .

the theoretical framework of SEGS. Section Il describes th Definition 4: A selective evolutionary generation system

physical and biological processes contained in the théwy t IS @ quintuple

SEGS is based on. Section IV highlights the biology connef-= (X;R.P.G,F), where

tions of the SEGS scheme itself. Section V highlights the « (X,R,P,G) is an evolutionary generation system,;

physics connections of the MCMC method that is equivalent « F : X — R™ is a function that evaluates cell fitness;

to the SEGS scheme. Section VI describes the final result one the set of cellsX, is reachable througls andR; and

evolution that is implied using a SEGS model. « the dynamics of the system are given by

[l. THE BIOLOGICAL PARALLELS IN SEGS [EFINITIONS Z (t+1) =Select. 2 (t),G(Z (t),2(1)),N). (3)

¢ In (3), 2°(t) denotes the realization of a random cell variable
at timet, Z(t) denotes the realization of a random resource
yariable attime, G(.2'(t), Z(t)) denotes the offspring of the

states or candidate optimizers. A cell utilizes a resouece f€@lized random cell utilizing the realized random reseurc
reproduceand generate an offspring, i.e., transition to anothet timet, and 2°(0) has a known probability mass function.

cell. Furthermore, it is possible that resources are chosenISO in (3), the probability of a cell realization at some
probabilistically. future time given the present cell realization is condiibyn

Definition 1: An evolutionary generation systeris a independent of the past time history of cell _realizatiomuéj

quadruple€ = (X,R,P,G), where the dynamics of a SEGS form a discrete-time homogeneous
Markov chain [11]. This property is useful for the SEGS

analysis conducted in [1].

The two central tenets of Darwin’s theory of evolution
« P:R— (0,1] is aprobability mass function on,Rjiven [12] arg emb0d|eq |r.1 Dgflmtlon 4. . .

m 1) Undirected variationvia the generation function.
by P(ri) = PriZz =ri] = pi, 2 Pe= 1, and 2) Natural selectionvia the Selectfunction.

+ G:XxR— X is ageneration functionthat maps a  The Selectfunction has a number of interesting properties
parent cell and a resource into a descendant cell.  [1], including:

X2 with probability W
1

In behavior design, aell is any element of the domain o
a reward function, and gesourceis any input that facilitates
a transition between cells. Cells may also be referred to

o X is aset of n cellsX = {x1,%2,...,%n};
» Ris aset of m resourceR= {ry,rp,...,rm}, that can
be utilized for cell reproduction;



« ForallN, Z(0) denotes the state realization at time 0, and we have
n
PriSelectx;,x,N) =x1] (' F(x) N @ 21 pi(0) = 1. Since we have assumed that the state$ ave
PriSelectxs, xo,N) =x]  \F(x2)/ ° ergodic and irreducible, they admit a unique stationaryppro

That is, the ratio of the probabilities of selecting any twoability distributiofn El]' [32]'. Letrr= [né bTZ TE‘] .t;e
cells is equal to the ratio of their respective fitnesseg1e row vector of these stantlonary probabilities, satredyihe

raised to the poweN. This property is calledocal constraintsrg >0 Vi, and 3 7 =1. LetF : X — R" be a

rationality. positive fitness function. Lail € N be a natural number.
The level of selectivityN, has a biological interpretation  Definition 5: The time-homogeneous, irreducible, ergodic
as well. Suppose that the fitness of a cell is measured by tMarkov chain(X, P) is said tobehave rationallywith respect
total number of descendants produced duvgenerationss>  to fithessF with level N if
1. This prolificity is typically calleduture reproductive value 775 F (%) N _ .
or fecundity[12]. When a colony is initiated by two self- 7~ \Fix ,1<i<n 1< j<n (7)
reproducing progenitors andx, the ratio of the descendant 15 is a djefinit|on oJ lobal rationality.

population fractions aftek generations equals the ratio of the g5ch stationary probability can also be explicitly charac-

respective future reproductive values, terized to ensure Markov chain rational behavior.
F(xq) Theorem 1:The time-homogeneous, irreducible, ergodic
(F(xz)>' () Markov chain (X,P) behaves rationally with respect to
] ) - . fitnessF with level N if and only if
After k generations, the ratio of the probability of choosing, N
by random sampling, a descendantxefto the probability M= F () 1<i<n o)
of choosing a descendant of is equal to the ratio of § F(Xk)N’ -
the descendant population fractions (5). Correspondiigy K=
ratio of the probability of selecting, at the initial time to the Proof: See [1]. o o =n
probability of selecting, at the initial time, (4), is identical Here, we have a more general, probabilistic version of the
to the ratio of the respective prolificities, (5), with= 1. optimization of an objective function. A Markov chain that

Now consider the following sequence of operations behaves rationally selects the state of maximum fithess with
. . , . the highest stationary probability, and, in the limit Bis
1) Initiate a colony with two self-reproducing progenitors . A .
approaches, this probability is 1. The problem and solution
X1 and xz, and let descendants be produced for Lo
then revert to one of standard optimization. Remarkably, ra

generations. . o ST Y
2) Extract a sample from the resulting population, Use thtéonal behavior in Markov chains is the result of a subsigiar

o timization.
sample to initiate a secopd colony, and let descendan?gTheorem 2:The stationary distributiont of the time-
be produced fok generations.

s homogeneous, irreducible, ergodic Markov ch@fP) that
3) lterate the sample and colony initiation procedure until : : ) :
th . ehaves rationally with respect to fitneBswith level N
an N™ colony is produced.

] N ) solves the optimization problem
Then, the ratio of the probability of selecting a descendant

of x1 to the probability of selecting a descendantgiusing min U (1) = — c o In(), 9)
this multi-step process becomes T, Th i;
N n
(F(X1)> (F(Xl)) . (F(Xl)) _ (F(X1)> (6) Subject to the constraint§ 75 = 1, and7 > 0, Vi, utilizing
Fi2)/) \F0e) F(x) F(x2) the fitness distribution
and it is now clear thalN represents the number of se- F(Xi)N
lections that are made, assumingk@eneration fecundity pi=—-—"—,1<i<n (20)
interpretation of fithess. A recent, well-publicized, loigical S F (xk)N
experiment that fits this multi-selection model is [33]. Proof: See [1]_":1 -

Furthermore, Theorem 2 states that at the optimum, the
stationary distribution agrees with the fitness distributi.e.,

IIl. THE PHYSICAL AND BIOLOGICAL PARALLELS
UNDERLYING SEGS EFICIENCY AND RESPONSIVENESS p
m=¢.

A. Efficiency Using the notion of entropy, we can interpret (9) as follows.
Let (X,P) be a time-homogeneous, irreducible, ergodi€irst, we recognize the term-In(7) as the information
Markov chain, whereX = {x1,X2,...,Xn} is the set of states content of stateg [34]. Hence, the right hand side of (9)

of a Markov processP € R™" is the matrix of transition represents the “fitness-expectation of information.” Mwe,
probabilities for these states, amd< o is the number of we have the following.

states. Assume that the initial probability distributionep Corollary 1: The time-homogeneous, irreducible, ergodic
the states is known, i.e., we are given afvector p(0) Markov chain (X,P) behaves rationally with respect to
having elementg; (0) = P2 (0) = x;] for all x; € X, where fitnessF with level N if and only if its stationary probability



distribution minimizes the fitness-expectation of infotioa. Definition 6: For any time-homogeneous, irreducible, er-
At the optimum, this fithess-expectation of informationhie t godic Markov chain(X,P) with a positive fitness function
entropy of the fitness distribution, i.e., for all the states inX, the extrinsic resilienceof statex; to
n changes in the fitness of statg j #1, is defined as
U*ZH(¢)=—Z¢i|n(¢i)- (11) P

Entropy maximization is impl)Brtant for search: ‘in making pij = 5,:7()(].)’ (16)
inferences on the basis of partial information, the maximum
entropy probability distribution subject to whatever iokm  and theintrinsic resilienceof statex; to changes in its own
is the only unbiased assignment we can make; to use af§pess is taken to be
other would amount to arbitrary assumption of information T
which by hypothesis we do not have’ [35]. The relationship pi = F) (17)

between entropy maximization and optimal search is clarifie \y, say that the Markov chaifX, P) is resilientif pij # 0
in [36]. The optimal search policy for cells with exponehtia o, g1l i and j.

‘sizes” ‘appears very much like an irreversible process in Thg |evel of selectivity has the following asymptotic effec

thermodynamics, in which an initially non-equilibrium ®a 4 (esilience.

relaxes in the the equilibrium state of maximum entropy. But Theorem 4:For the time-homogeneous,

now it is only our state of knowledge that relaxes to th%odic Markov chain (X, P)

“equilibrium” condition of maximum uncertainty’ [36]. '
Applying the results from [36] and [35], an exponential

irreducible, er-
that behaves rationally with
respect to fitnes§ with level N,

normalized fitness function relates rational behavionagyt o ‘N—O _ pn‘ _o, (18)
and optimal search through the following theorem. j#i N=0
Theorem 3:Let y: X — R be an unknown function for
which an expected value,[¥x)], is a known numbeY. The and _ )
normalized fitness Jlim pij = lim_pii = 0. (19)
. . i#
¢ =ae PYX) 1<i<n, (12) Proof: See [1]. [

As a result of Theorem 4, we have quantification that stan-
" dard optimization l — ) is non-resilient. Moreover, recall
that if we assume &-generation fecundity interpretation of
fitness as in Section I, thed — o also represents an infinite
number of selections made ovér generations. There is
. n much biological evidence to confirm that prolonged selectiv
;’;%’;,’;2}15‘”“(4’»") - _i;¢i In(r), (13) breeding yields non-resilient strains [38]—[42].
Resilience is a direct outcome of Markov chain rational
behavior, as stated below.

and the stationary distributiorr of the time-homogeneous
irreducible, ergodic Markov chairiX,P) that behaves ra-
tionally with respect to fitnes§ with level N solves the
optimization problem

subject to the constraint

Ely()] =Y. (14)  Theorem 5:The time-homogeneous, irreducible, ergodic
Proof: See [1]. m Markov chain(X,P) is resilient if the chain behaves ratio-
Hence, a scheme with underlying Markov chain dynamic§a||y-
that behave rationally also maximizes the entropy of the Proof: See [1]. u
fitness distribution when the fithess function is exponéntia
The implication is that a fitness function like IV. THE BIOLOGICAL PARALLELS IN THE SEGS $HEME
F(x)= o (@) ~24e9”) (15)

Definition 7: Let ' = (X,R,P,G,F) be a selective evolu-
together with a scheme that makes use of rational behavitnary generation system. Lgtc X andx; € X be any two
(e.g., SEGS, see Section V) guarantees “good” behavioeglls, andry € R be a resource. Théescendancy tensod,
efficiently. has elements

Exponential fitness functions arise in nature if one consid-

ers fecundity as the measure of fitness (recall that populati 1 if X = G(%, ),

growth is an exponential function). Other examples include 9k = 1<i<n 1<j<n 1<k<m,  (20)
the beak depth of the Galapagos finches [37] and instances 0 otherwise.
whendirectional selectior{12] is prevalent. Hence, the descendancy tensor indicates whether it is-possi

_ ble to produce celk; in one step from celk;, using resource
B. Responsiveness r. We can use this tensor to create a matrix that represents
Responsiveness in Markov chain rational behavior theotpie conditional probability of generating; given that the
is defined as the sensitivity of the stationary distribution progenitor isx;, by utilizing the probability of selecting each
changes in fitness. available resource and summing over ralkesources.



Definition 8: For the SEGS = (X,R,P,G,F), thematrix dynamics of the ergodic SEGS is time-reversible, i.e.,
of generation probabilitiesy, also called the unselective

matrix of transition probabilities, has elements TiRj = mPji, Vi, j. (26)
N L Proof: See [1]. ]
% = Prloffspring isx; | progenitor isx],  (21)  Asa consequence, the Markov chain representing the stochas

tic dynamics of the SEGS and its time reversed form are
e statistically the same.

This matrix is a stochastic matrix. The SEGS algorithm has many biological parallels. During
Recall that a SEGS follows the stochastic Markov processsexual reproduction, an additional cell is generatedutiito
described by (3). Therefore, we can find a matrix of transitioa division of genetic material in a process called mitosis
probabilities to describe the cell-to-cell transitionattbccur [12]. Each cell's genetic identity is parameterized by a
as a result of the selection dynamics. For the SHGS sequence of symbols from a four letter alphabet, its gemotyp
(X,R,P,G,F), the matrix of transition probabilitiesP, has while the physical realization of a genotype is known as its

elements phenotype. Although reproduction occurs through openatio
R =PH2 (t+1) =x | 2°(t) = x], (23) on the .genotypef it is the functionali.ty. of the phenotypé tha
determines cell fitness [12]. Hence, it is hecessary to atcou
for the genotype-phenotype mapping when evaluating cell

m
= kb 1<i<n 1<j<n (22)

:Pr[SeIec(xi,xj,N) =X | Z°(t) = x]x

Prioffspring isx; | progenitor isx;] (24) fitness in a SEGS.
1 i . .
1+<F(xi))N i Vi#L V. THE PHYSICS PARALLELS IN THE SEGS MCMC
— G (25) METHOD
. 1 X . A
Vi +,Z1 Fog i T T=1 The SEGS algorithm is an example of a Markov chain
j£i (F<Xi>> Monte Carlo (MCMC) algorithm. MCMC algorithms are use-

Note that the matrix of transition probabilities in (25) is@ ful for simulating large random fields through sampling, and
a stochastic matrix. are frequently employed in statistical mechanics appboat
In addition to irreducibility, if we assume that the seleati [11]. MCMC algorithms utilize an irreducible, aperiodic,

dynamics of the SEGS is ergodic, then a unique stationaine-homogeneous Markov chain such that the stationary
probab|||ty distribution over the set Of Ce”s exists_ iStribUtion,n, iS the target diStribUtion. Since ConVergence to

Theorem 6:For the ergodic SEGY = (X,RP,G,F), the target distribution is easier to check for reversiblehda
assume that the matrix of generation probabilitiess sym- chains, these Markov chains are the most frequent case of
metric. Then the Markov chain representing the stochagtic (MCMC algorithms [11].
namics of the ergodic SEGS behaves rationally with fitless A generic formulation is specified by the Hastings algo-
and levelN. That is, the row vectorr= [ﬂl ™ ... m}, rithm; special cases of the Hastings algorithm include the
where i satisfies (8), is a left eigenvector B the matrix Metropolis algorithm, which is used in simulated annealing
of transition probabilities for™, with corresponding eigen- and Barker’s algorithm. The latter algorithm is derivednfro

value 1 (i.e.,P = ). Hence,m is the vector of stationary Barker's sampler [45], which computes radial distribution
probabilities for the SEGS. functions for plasmas over a wide range of temperatures and

Proof: See [1]. m densities to calculate macroscopic thermodynamic vasabl

As a result of Theorem 5, the stochastic dynamics of thk [1], it is shown that the SEGS algorithm and Barker's
ergodic SEGS with symmetric matrix of generation probadlgorithm are the same.
bilities, y, are resilient. Hence, a SEGS is a computationally However, we arrived at Barker's algorithm in a non-
inexpensive on-line technique to achieve these charatiteri traditional manner, i.e., we did not assume time-reveisibi
because only local decisions between two candidate optimand begin at Hasting’s algorithm. Instead, modeling Nature
ers are made at any time. The need to evaluate the fitnessnsf started with a self-reproducing process and selected
all elements in the domain of the objective function, or eveaccording to local rationality. The aim was to achieve globa
in a sub-population of candidate optimizers (as in genetiational behavior, thereby resulting in resilience. A riegg
algorithms or evolutionary strategies), is avoided. assumption was equiprobable forward and reverse transitio

The symmetry condition on the matrix of generation prokprior to selection, a fact borne out in Nature. This assump-
abilities, y, implies that there exists equiprobable forwardion resulted in the SEGS algorithm being time-reversible.
and reverse transitions between any pair of cells prior teurthermore, efficient searching suggested exponential fit
the selection process. More specifically, symmetryyd§ a ness functions, which are also documented in Nature. The
requirement that mutations be reversible. This reveisibil combination of an exponential fitness function and a SEGS
requirement is satisfied in biology, and such mutations amgorithm is the Barker sampler.
calledtrue back mutation$43], [44]. In light of the connection between rational behavior and

Theorem 7:For the ergodic SEGT = (X,RP,G,F), statistical mechanics through entropy, it is perhaps ypr&ir
assume that the matrix of generation probabilitiess sym- ing that selective evolutionary generation results in Besk
metric. Then the Markov chain representing the stochasti@rsion of an MCMC method.



VI. THE IMPLICATION [18]

Whereas the Metropolis algorithm is optimal with respect
to asymptotic variance in the class of Hastings algorithmig®l
with fixed candidate-generating matriQ [11], Barker's
algorithm is optimal with respect to search efficiency undepoj
the technical conditions specified in Theorem 3.

Since the SEGS technique results in Barker's algorithn[b1
efficient search is guaranteed under these same technica
conditions. SEGS is a model for evolutionary processdd?l
that achieve responsive behaviors, and the implication i§3]
that evolution is also optimally search efficient when the
technical conditions hold. As documented in this papel24]
the technical conditions (exponential fitness functionge t
back mutations, etc.) have been verified in Nature. Eveps)
intermediate results of this model (rational behavior i co
lectives, repeated selections corresponding to the lefel o
selectivity, losses in resilience due to prolonged salejti [26]
are corroborated by examples in Nature.

Lastly, the fact that Nature utilizes sexual reproductionI]27]
pairs does not invalidate the above SEGS model and claifzg]
This is because half of the reproductive pairing can be
viewed as a cell in the model, and the other half can be
viewed as a resource; thus, the set of cells and resources
in the SEGS model have a non-empty intersection. Further

. . . %g]
the protestation that more than one resource is required for
reproduction can also be included in the model without
significant changes; each resource can itself be consideré@l
a set containing the requisite water, nutrients, etc. requi

by a cell for reproduction. [31]
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